Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Biomed ; 38(3): 420-434, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608116

RESUMO

Trichinellosis is an important zoonotic parasitic disease worldwide and is principally caused by ingesting animal meat containing Trichinella infective larvae. Aspartyl aminopeptidase is an intracytoplasmic metalloproteinase that specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids (aspartic acid and glutamate), and plays an important role in the metabolism, growth and development of organisms. In this study, a novel T. spiralis aspartyl aminopeptidase (TsAAP) was cloned and expressed, and its biological properties and roles in worm growth and development were investigated. The results revealed that TsAAP transcription and expression in diverse T. spiralis stages were detected by RT-PCR and Western blotting, and primarily localized at cuticle, stichosome and intrauterine embryos of this nematode by immunofluorescence test. rTsAAP has the enzymatic activity of native AAP to hydrolyze the substrate H-Glu-pNA. There was a specific binding between rTsAAP and murine erythrocyte, and the binding site was localized in erythrocyte membrane proteins. Silencing of TsAAP gene by specific dsRNA significantly reduced the TsAAP expression, enzymatic activity, intestinal worm burdens and female fecundity. The results demonstrated that TsAAP participates in the growth, development and fecundity of T. spiralis and it might be a potential target molecule for anti-Trichinella vaccines.


Assuntos
Glutamil Aminopeptidase , Proteínas de Helminto/genética , Trichinella spiralis/enzimologia , Animais , Clonagem Molecular , Eritrócitos/parasitologia , Feminino , Glutamil Aminopeptidase/genética , Camundongos , Camundongos Endogâmicos BALB C , Trichinella spiralis/genética , Triquinelose
2.
Trop Biomed ; 38(1): 160-171, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797541

RESUMO

Trichinella spiralis is an important foodborne zoonotic parasite and it is necessary to develop vaccine to prevent T. spiralis infection in food animals. T. spiralis aspartic protease-2 (TsASP2) has been demonstrated to play a crucial role in larval invasion of intestinal epithelium cells (IECs). The purpose of this study was to assess the interaction between TsASP2 and IECs and to investigate the immune protection elicited by vaccination with rTsASP2. The results showed that the enzymatic activity of native aspartic protease was detected in crude proteins of all T. spiralis development stages other than NBL stage, the highest activity was observed in the IIL stage. The results of Western blot showed that TsASP2 protein was expressed at ML, IIL and AW but not NBL, and the TsASP2 expression level at IIL stage was significantly higher than those of other three worm stages (P < 0.05). The specific binding between rTsASP2 and IECs was observed by immunofluorescence test (IFT) and confocal microscopy, and the binding site was localized at the IEC membrane and this binding ability was inhibited by aspartic protease specific inhibitor pepstain A. The results of ELISA showed that the binding ability was protein dose-dependent. Vaccination with rTsASP2 triggered a mixed Th1/Th2 humoral and mucosal immune responses, as demonstrated by the elevation levels of Th1/Th2 cytokines (IFN-γ and IL-4) secreted by the spleen and mesenteric lymph nodes (MLNs) of immunized mice. The mice vaccinated with rTsASP2 exhibited a 54.17% reduction in enteral adult worms and a 54.58% reduction in muscle larvae after T. spiralis challenge. The results demonstrated that TsASP2 might be a potential molecular target for anti-Trichinella vaccines.


Assuntos
Ácido Aspártico Proteases/metabolismo , Enterócitos/parasitologia , Proteínas de Helminto/metabolismo , Mucosa Intestinal/parasitologia , Triquinelose/parasitologia , Animais , Feminino , Imunidade Humoral , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C , Trichinella spiralis/enzimologia , Triquinelose/imunologia , Vacinação , Vacinas/imunologia
3.
Trop Biomed ; 37(4): 932-946, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33612747

RESUMO

In previous studies, a Trichinella spiralis serine protease (TsSP) was identified in excretion/secretion (ES) products from intestinal infective L1 larvae (IIL1) using immunoproteomics. The complete cDNA sequence of TsSP gene was 1372 bp, which encoded 429 amino acids with 47.55 kDa. The TsSP was transcribed and expressed at all T. spiralis life cycle phases, as well as mainly located at the cuticle and stichosome of the parasitic nematode. Recombinant TsSP bind to intestinal epithelial cells (IEC) and promoted larva invasion, however, its exact function in invasion, development and reproduction are still unknown. The aim of this study was to confirm the biological function of TsSP during T. spiralis invasion and growth using RNA interference (RNAi) technology. The results showed that on 1 day after electroporation using 2.5 µM siRNA156, TsSP mRNA and protein expression of muscle larvae (ML) was suppressed by 48.35 and 59.98%, respectively. Meanwhile, silencing of TsSP gene by RNAi resulted in a 61.38% decrease of serine protease activity of ML ES proteins, and a significant reduction of the in vitro and in vivo invasive capacity of IIL1 to intrude into the IEC monolayer and intestinal mucosa. When mice were infected with siRNA 156-transfected larvae, adult worm and muscle larva burdens were decreased by 58.85 and 60.48%, respectively. Moreover, intestinal worm growth and female fecundity were evidently inhibited after TsSP gene was knockdown, it was demonstrated that intestinal adults became smaller and the in vitro newborn larval yield of females obviously declined compared with the control siRNA group. The results indicated that knockdown of TsSP gene by RNAi significantly reduced the TsSP expression and enzymatic activity, impaired larvae intrusion and growth, and lowered the female reproductive capacity, further verified that TsSP might participate in diverse processes of T. spiralis life cycle, it will be a new prospective candidate molecular target of anti-Trichinella vaccines.


Assuntos
Fertilidade , Serina Proteases/genética , Trichinella spiralis/enzimologia , Animais , Feminino , Inativação Gênica , Mucosa Intestinal/parasitologia , Larva , Camundongos , Camundongos Endogâmicos BALB C , Interferência de RNA , Trichinella spiralis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...